Interactive programming environments are powerful tools for promoting innovative network thinking, teaching complexity science, and exploring emergent phenomena. This paper reports on our recent development of the deterministic random walk model in NetLogo, a leading platform for computational thinking, eco-system thinking, and multi-agent cross-platform programming environment. The deterministic random walk is foundational to modeling dynamical processes on complex networks. Inspired by the temporal visualizations offered in NetLogo, we investigated the relationship between network topology and diffusion saturation time for the deterministic random walk model. Our analysis uncovers that in Erdos-Renyi graphs, the saturation time exhibits an asymmetric pattern with a considerable probability of occurrence. This behavior occurs when the hubs, defined as nodes with relatively higher number of connections, emerge in Erdos-Renyi graphs. Yet, our analysis yields that the Barabasi-Albert model hubs stabilize the the convergence time of the deterministic random walk model. These findings strongly suggest that depending on the dynamical process running on complex networks, complementing characteristics other than the degree need to be taken into account for considering a node as a hub. We have made our development open-source, available to the public at no cost at https://github.com/bravandi/NetLogo-Dynamical-Processes.
翻译:互动编程环境是推动创新网络思维、教授复杂科学以及探索突发现象的有力工具。 本文报告了我们最近在NetLogo(计算思维、生态系统思维和多试剂跨平台编程环境的主要平台)开发的确定性随机行走模型。 确定性随机行走是模拟复杂网络动态进程的基础。 在NetLogo提供的时间可视化模型的启发下, 我们研究了确定性随机行走模型的网络地形学和传播饱和时间之间的关系。 我们的分析揭示了Erdos- Renyi 图中的动态随机行走模型, 饱和时间呈现出一种不对称的模式, 其发生的可能性很大。 这种行为发生在中心时, 被定义为连接数量相对较多的节点, 出现在Erdos- Renyi 图中。 然而, 我们的分析显示, Barabasi- Albert 模型中心稳定了确定性随机行走模型的趋同时间。 这些发现有力地表明, 取决于动态网络运行的过程, 补充了非度特性, 度 的特征需要考虑在公共中心/ 开放中心进行 。