How does the geometric representation of a dataset change after the application of each randomly initialized layer of a neural network? The celebrated Johnson--Lindenstrauss lemma answers this question for linear fully-connected neural networks (FNNs), stating that the geometry is essentially preserved. For FNNs with the ReLU activation, the angle between two inputs contracts according to a known mapping. The question for non-linear convolutional neural networks (CNNs) becomes much more intricate. To answer this question, we introduce a geometric framework. For linear CNNs, we show that the Johnson--Lindenstrauss lemma continues to hold, namely, that the angle between two inputs is preserved. For CNNs with ReLU activation, on the other hand, the behavior is richer: The angle between the outputs contracts, where the level of contraction depends on the nature of the inputs. In particular, after one layer, the geometry of natural images is essentially preserved, whereas for Gaussian correlated inputs, CNNs exhibit the same contracting behavior as FNNs with ReLU activation.
翻译:在应用神经网络的随机初始化层之后,数据集的变化的几何表示方式如何? 著名的约翰逊- 林登斯特拉斯列姆马(Johnson- Lindenstraus lemma)回答了线性完全连接的神经网络(FNNS)的问题,指出几何基本保存。 对于使用RELU(ReLU)激活的两个输入合同之间的角,根据已知的映射,两个输入合同之间的角是如何变化的? 非线性神经网络(CNNs)的问题变得更复杂得多。为了回答这个问题,我们引入了一个几何框架。对于线性CNN(线性CNN)来说,我们展示了两种输入之间的角继续维持着。对于使用RELU(ReLU)激活的CNNIS(CNN)来说,行为更为丰富:产出合同之间的角,其收缩程度取决于投入的性质。特别是,在一个层之后,自然图像的几何测量基本保持,而对于Gaussian(Gaussian)相关输入,CNNIS(CNN)则展示了与REN(FN)相同的订约行为与RELU(ReLU)一样。