In video streaming applications, a fixed set of bitrate-resolution pairs (known as a bitrate ladder) is typically used during the entire streaming session. However, an optimized bitrate ladder per scene may result in (i) decreased storage or delivery costs or/and (ii) increased Quality of Experience. This paper introduces a Just Noticeable Difference (JND)-aware per-scene bitrate ladder prediction scheme (JASLA) for adaptive video-on-demand streaming applications. JASLA predicts jointly optimized resolutions and corresponding constant rate factors (CRFs) using spatial and temporal complexity features for a given set of target bitrates for every scene, which yields an efficient constrained Variable Bitrate encoding. Moreover, bitrate-resolution pairs that yield distortion lower than one JND are eliminated. Experimental results show that, on average, JASLA yields bitrate savings of 34.42% and 42.67% to maintain the same PSNR and VMAF, respectively, compared to the reference HTTP Live Streaming (HLS) bitrate ladder Constant Bitrate encoding using x265 HEVC encoder, where the maximum resolution of streaming is Full HD (1080p). Moreover, a 54.34% average cumulative decrease in storage space is observed.
翻译:在视频流应用中,通常在整个流媒体会话期间使用固定的比特率 - 分辨率对(称为比特率 - 阶梯)。然而,每个场景的优化比特率阶梯可能会导致(i)降低存储或传递成本或(ii)提高体验质量。本文提出了一种基于可感知差异(JND)的场景自适应比特率阶梯预测方案(JASLA),用于自适应视频点播流应用。JASLA使用针对每个场景的空间和时间复杂度特征,联合预测给定目标比特率的经过优化的分辨率和相应的恒定速率因子(CRFs),从而产生高效的受限可变比特率编码。此外,消除了产生失真小于一个JND的比特率分辨率对。实验结果表明,与参考HTTP直播流(HLS)比特率阶梯x265 HEVC编码器使用常数比特率编码的情况下,以保持相同的PSNR和VMAF,JASLA平均可节省34.42%和42.67%的比特率,其中流媒体的最大分辨率为Full HD(1080p)。此外,观察到了54.34%的平均累积存储空间减少。