Multi-label classification (MLC) has recently received increasing interest from the machine learning community. Several studies provide reviews of methods and datasets for MLC and a few provide empirical comparisons of MLC methods. However, they are limited in the number of methods and datasets considered. This work provides a comprehensive empirical study of a wide range of MLC methods on a plethora of datasets from various domains. More specifically, our study evaluates 26 methods on 42 benchmark datasets using 20 evaluation measures. The adopted evaluation methodology adheres to the highest literature standards for designing and executing large scale, time-budgeted experimental studies. First, the methods are selected based on their usage by the community, assuring representation of methods across the MLC taxonomy of methods and different base learners. Second, the datasets cover a wide range of complexity and domains of application. The selected evaluation measures assess the predictive performance and the efficiency of the methods. The results of the analysis identify RFPCT, RFDTBR, ECCJ48, EBRJ48 and AdaBoostMH as best performing methods across the spectrum of performance measures. Whenever a new method is introduced, it should be compared to different subsets of MLC methods, determined on the basis of the different evaluation criteria.


翻译:最近,机器学习界对多标签分类(MLC)的兴趣日益浓厚,一些研究对刚果解放运动的方法和数据集进行了审查,有些研究对刚果解放运动的方法和数据集进行了经验性比较,不过,这些研究对刚果解放运动的方法和数据集数量有限,但所考虑的方法和数据集数量有限,这项工作对来自不同领域的众多数据集的刚果解放运动方法进行了全面的经验性研究;更具体地说,我们的研究利用20项评价措施对42个基准数据集的26种方法进行了评价;采用的评价方法遵守了设计和实施大规模、有时间预算的实验性研究的最高文献标准;首先,根据社区使用的方法选择了方法,确保了刚果解放运动方法分类和不同基础学习者的方法的代表性;第二,数据集涵盖广泛的复杂程度和应用领域;选定的评价措施评估了方法的预测性业绩和效率;分析结果确定RFPCT、RFDDBR、ECCJ48、EBRJ48、EBRJ48和AdaBoostMH是整个业绩计量的最佳执行方法。每当采用新的方法时,就刚果解放运动的不同评估标准进行比较。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
15+阅读 · 2020年2月6日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
6+阅读 · 2018年6月18日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员