Future quantum networks will be hybrid structures, constructed from complex architectures of quantum repeaters interconnected by quantum channels that describe a variety of physical domains; predominantly optical-fiber and free-space links. In this hybrid setting, the interplay between the channel quality within network sub-structures must be carefully considered, and is pivotal for ensuring high-rate end-to-end quantum communication. In this work, we combine recent advances in the theory of point-to-point free-space channel capacities and end-to-end quantum network capacities in order to develop critical tools for the study of hybrid, free-space quantum networks. We present a general formalism for studying the capacities of arbitrary, hybrid quantum networks, before specifying to the regime of atmospheric and space-based quantum channels. We then introduce a class of modular quantum network architectures which offer a realistic and readily analysable framework for hybrid quantum networks. By considering a physically motivated, highly connected modular structure we are able to idealize network performance and derive channel conditions for which optimal performance is guaranteed. This allows us to reveal vital properties for which distance-independent rates are achieved, so that the end-to-end capacity has no dependence on the physical separation between users. Our analytical method elucidates key infrastructure demands for a future satellite-based global quantum internet, and for hybrid wired/wireless metropolitan quantum networks.
翻译:未来量子网络将是混合结构,由量子中继器的复杂结构组成,由描述各种物理领域的量子频道相互连接;主要是光纤和自由空间连接;在这种混合环境中,必须认真考虑网络子结构内频道质量的相互作用,这对确保高端端到终端量子通信至关重要;在这项工作中,我们将点到点自由空间频道能力和端到端端量子网络能力理论的最新进展结合起来,以便开发研究混合、自由空间量子网络的关键工具;我们在确定大气和空基量子频道制度之前,对任意、混合量子网络的能力进行了一般的正规化研究;然后,我们引入了一组模块量子网络结构,为混合量子网络提供了一个现实和容易解析的框架;通过考虑一种有实际动机的、高度连接的模块结构,我们得以实现网络性能的理想化,并获得保证最佳性能的频道条件;这使我们得以揭示出各种关键特性,从而实现无距离依赖的量子网络,从而最终到端量子网络的能力对于大气和空基量子频道系统系统系统系统的需求,从而无法对实际的互联网用户进行定量分析。