Whole Slide Image (WSI) classification relies on Multiple Instance Learning (MIL) with spatial patch features, yet existing methods struggle to capture global dependencies due to the immense size of WSIs and the local nature of patch embeddings. This limitation hinders the modeling of coarse structures essential for robust diagnostic prediction. We propose Fourier Transform Multiple Instance Learning (FFT-MIL), a framework that augments MIL with a frequency-domain branch to provide compact global context. Low-frequency crops are extracted from WSIs via the Fast Fourier Transform and processed through a modular FFT-Block composed of convolutional layers and Min-Max normalization to mitigate the high variance of frequency data. The learned global frequency feature is fused with spatial patch features through lightweight integration strategies, enabling compatibility with diverse MIL architectures. FFT-MIL was evaluated across six state-of-the-art MIL methods on three public datasets (BRACS, LUAD, and IMP). Integration of the FFT-Block improved macro F1 scores by an average of 3.51% and AUC by 1.51%, demonstrating consistent gains across architectures and datasets. These results establish frequency-domain learning as an effective and efficient mechanism for capturing global dependencies in WSI classification, complementing spatial features and advancing the scalability and accuracy of MIL-based computational pathology.


翻译:全切片图像(WSI)分类依赖于基于空间图像块特征的多示例学习(MIL),然而,由于WSI的巨大尺寸以及图像块嵌入的局部特性,现有方法难以捕捉全局依赖关系。这一限制阻碍了对实现稳健诊断预测至关重要的粗粒度结构的建模。我们提出了傅里叶变换多示例学习(FFT-MIL),这是一个通过频域分支增强MIL的框架,以提供紧凑的全局上下文。通过快速傅里叶变换从WSI中提取低频区域,并通过一个由卷积层和最小-最大归一化组成的模块化FFT-Block进行处理,以减轻频率数据的高方差。学习到的全局频率特征通过轻量级集成策略与空间图像块特征融合,从而使其能够与多种MIL架构兼容。FFT-MIL在三个公开数据集(BRACS、LUAD和IMP)上,对六种最先进的MIL方法进行了评估。集成FFT-Block将宏观F1分数平均提高了3.51%,AUC提高了1.51%,证明了其在不同架构和数据集上均能带来一致的性能提升。这些结果表明,频域学习是捕捉WSI分类中全局依赖关系的一种有效且高效的机制,它补充了空间特征,并推进了基于MIL的计算病理学的可扩展性和准确性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员