Accurate reporting of energy and carbon usage is essential for understanding the potential climate impacts of machine learning research. We introduce a framework that makes this easier by providing a simple interface for tracking realtime energy consumption and carbon emissions, as well as generating standardized online appendices. Utilizing this framework, we create a leaderboard for energy efficient reinforcement learning algorithms to incentivize responsible research in this area as an example for other areas of machine learning. Finally, based on case studies using our framework, we propose strategies for mitigation of carbon emissions and reduction of energy consumption. By making accounting easier, we hope to further the sustainable development of machine learning experiments and spur more research into energy efficient algorithms.
翻译:准确报告能源和碳使用情况对于了解机器学习研究对气候的潜在影响至关重要。我们引入了一个框架,通过为实时能源消费和碳排放跟踪提供简单界面,以及生成标准化在线附录,使这一框架更加容易。我们利用这一框架,创建了节能强化学习算法的主导板,鼓励在这一领域进行负责任的研究,作为其他机器学习领域的一个范例。最后,根据利用我们框架进行的案例研究,我们提出了减少碳排放和减少能源消费的战略。通过简化会计,我们希望进一步推进机器学习实验的可持续发展,并激励更多研究节能算法。