Blood vessel segmentation is one of the most studied topics in computer vision, due to its relevance in daily clinical practice. Despite the evolution the field has been facing, especially after the dawn of deep learning, important challenges are still not solved. One of them concerns the consistency of the topological properties of the vascular trees, given that the best performing methodologies do not directly penalize mistakes such as broken segments and end up producing predictions with disconnected trees. This is particularly relevant in graph-like structures, such as blood vessel trees, given that it puts at risk the characterization steps that follow the segmentation task. In this paper, we propose a similarity index which captures the topological consistency of the predicted segmentations having as reference the ground truth. We also design a novel loss function based on the morphological closing operator and show how it allows to learn deep neural network models which produce more topologically coherent masks. Our experiments target well known retinal benchmarks and a coronary angiogram database.


翻译:血液分离是计算机视觉中研究最多的课题之一,因为它在日常临床实践中具有相关性。尽管这个领域一直面临着演变,特别是在深层学习之后,但依然存在着重大挑战。其中之一是血管树的地形特性的一致性,因为最佳的操作方法并不直接惩罚断裂的片段等错误,最终用断开的树木作出预测。这在像图一样的结构中特别相关,如血管树,因为它会危及分离任务之后的定性步骤。在本文件中,我们提出了一个相似性指数,以地面真相为参照,记录预测的分层的地形一致性。我们还设计了一个基于形态封闭操作者的新的损失功能,并展示它如何能够学习产生更具有结构一致性的面罩的深神经网络模型。我们的实验目标是众所周知的视线基准和一个冠状动图数据库。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
96+阅读 · 2019年12月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员