Multi-type recurrent events are often encountered in medical applications when two or more different event types could repeatedly occur over an observation period. For example, patients may experience recurrences of multi-type nonmelanoma skin cancers in a clinical trial for skin cancer prevention. The aims in those applications are to characterize features of the marginal processes, evaluate covariate effects, and quantify both the within-subject recurrence dependence and the dependence among different event types. We use copula-frailty models to analyze correlated recurrent events of different types. Parameter estimation and inference are carried out by using a Monte Carlo expectation-maximization (MCEM) algorithm, which can handle a relatively large (i.e., three or more) number of event types. Performances of the proposed methods are evaluated via extensive simulation studies. The developed methods are used to model the recurrences of skin cancer with different types.
翻译:当两种或两种以上不同事件在观察期内反复发生时,医疗应用中往往会遇到多类经常事件,例如,在皮肤癌预防临床试验中,病人可能会经历多类非蛋白质皮肤癌的复发,这些应用的目的是确定边缘过程的特点,评估共变效应,量化不同事件类型之间在受子体内的重复依赖性和依赖性。我们使用相近的易碎模型分析不同类型相关重复事件。通过使用蒙特卡洛预期-最大化算法(MCEM)进行参数估计和推论,该算法可以处理数量相对较大(即3个或3个以上)的事件类型。通过广泛的模拟研究对拟议方法的绩效进行评估。我们使用开发的方法来模拟不同类型的皮肤癌复发。