This survey gives an overview of Monte Carlo methodologies using surrogate models, for dealing with densities which are intractable, costly, and/or noisy. This type of problem can be found in numerous real-world scenarios, including stochastic optimization and reinforcement learning, where each evaluation of a density function may incur some computationally-expensive or even physical (real-world activity) cost, likely to give different results each time. The surrogate model does not incur this cost, but there are important trade-offs and considerations involved in the choice and design of such methodologies. We classify the different methodologies into three main classes and describe specific instances of algorithms under a unified notation. A modular scheme which encompasses the considered methods is also presented. A range of application scenarios is discussed, with special attention to the likelihood-free setting and reinforcement learning. Several numerical comparisons are also provided.
翻译:本调查概述了使用替代模型处理难以解决、费用昂贵和(或)吵闹的密度的蒙特卡洛方法。这种类型的问题可见于许多现实情景中,包括随机优化和强化学习,每次对密度函数的评估都可能产生一些计算成本,甚至物理(现实世界活动)成本,每次可能产生不同的结果。替代模型不产生这种成本,但在选择和设计此类方法时却涉及重要的权衡和考虑。我们将不同方法分为三大类,并描述在统一标记下算法的具体实例。还介绍了包含所考虑方法的模块化方案。讨论了一系列应用情景,特别注意无可能性的设置和强化学习。还提供了若干数字比较。