Sensor calibration, which can be intrinsic or extrinsic, is an essential step to achieve the measurement accuracy required for modern perception and navigation systems deployed on autonomous robots. To date, intrinsic calibration models for spinning LiDARs have been based on hypothesized based on their physical mechanisms, resulting in anywhere from three to ten parameters to be estimated from data, while no phenomenological models have yet been proposed for solid-state LiDARs. Instead of going down that road, we propose to abstract away from the physics of a LiDAR type (spinning vs solid-state, for example), and focus on the spatial geometry of the point cloud generated by the sensor. By modeling the calibration parameters as an element of a special matrix Lie Group, we achieve a unifying view of calibration for different types of LiDARs. We further prove mathematically that the proposed model is well-constrained (has a unique answer) given four appropriately orientated targets. The proof provides a guideline for target positioning in the form of a tetrahedron. Moreover, an existing Semidefinite programming global solver for SE(3) can be modified to compute efficiently the optimal calibration parameters. For solid state LiDARs, we illustrate how the method works in simulation. For spinning LiDARs, we show with experimental data that the proposed matrix Lie Group model performs equally well as physics-based models in terms of reducing the P2P distance, while being more robust to noise.


翻译:感应器校准可以是内在的或外部的,是达到在自主机器人上部署的现代感知和导航系统所需的测量精确度的必要步骤。 迄今为止,旋转激光雷达的内在校准模型基于物理机制的假设大小,导致从数据中估算出三至十个参数,而还没有为固态激光雷达提议过血球学模型。我们提议从“激光雷达”类型物理学中抽取出,而不是要达到在自主机器人上部署的现代感知和导航系统所需的测量精确度。迄今为止,旋转激光雷达的内在校准模型是基于其物理机制的假设,因此,我们通过将校准参数建模作为特殊矩阵“激光雷达”组的一个要素,实现了对不同类型激光雷达的校准的统一观点。我们从数学角度进一步证明,在四个模型中给出了非常松散的答案。证据提供了以四重时钟形式定位目标的指南。此外,在SE(3)号特别矩阵组中,现有的Se-definite阵列阵列的阵列校准参数的校准参数,可以同样地以Sy-define Streal Droal Strodu 。

0
下载
关闭预览

相关内容

第26届SPIN研讨会旨在将对软件分析和软件模型自动化工具技术感兴趣的研究人员和实践者聚集在一起,以进行验证和确认。研讨会特别关注并发软件,但不排除对顺序软件的分析。提交的资料包括理论结果、新算法、工具开发和经验评估。官网链接:https://conf.researchr.org/track/spin-2019/spin-2019-papers
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
58+阅读 · 2019年11月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月28日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员