This report summarizes IROS 2019-Lifelong Robotic Vision Competition (Lifelong Object Recognition Challenge) with methods and results from the top $8$ finalists (out of over~$150$ teams). The competition dataset (L)ifel(O)ng (R)obotic V(IS)ion (OpenLORIS) - Object Recognition (OpenLORIS-object) is designed for driving lifelong/continual learning research and application in robotic vision domain, with everyday objects in home, office, campus, and mall scenarios. The dataset explicitly quantifies the variants of illumination, object occlusion, object size, camera-object distance/angles, and clutter information. Rules are designed to quantify the learning capability of the robotic vision system when faced with the objects appearing in the dynamic environments in the contest. Individual reports, dataset information, rules, and released source code can be found at the project homepage: "https://lifelong-robotic-vision.github.io/competition/".
翻译:本报告总结了IROS 2019-终身机器人视觉竞赛(终身物体识别挑战),其方法和成果来自顶尖的8美元决赛者(超过150美元的团队),竞争数据集(L)ifel(O)ng(R)bodic V(IS)ion(OnloRIS)-物体识别(OpenLoris-object),目的是在机器人视觉领域推动终身/连续学习研究和应用,在家庭、办公室、校园和商场的情景中,以日常物体为主。数据集明确量化了照明、物体隔离、物体大小、摄像标距离/角和杂物信息等变量。规则旨在量化机器人视觉系统在面对竞赛动态环境中出现的物体时的学习能力。个人报告、数据集信息、规则和发布源代码可在项目主页上找到:“https://lifelong-robtophy-vision.github.competial/”。