As highly sensitive camera pixel sensor arrays have grown both larger and faster and optical microscopy techniques become ever more refined, there has been an explosion in the quantity of data acquired during routine light microscopy. At the single-molecule level, this analysis involves multiple steps and can quickly become computationally expensive, and in some cases intractable on an ordinary office workstation. Moreover, complex bespoke software can present a high activation barrier to entry for new users. In this work, we present our recent efforts to redevelop our quantitative single-molecule analysis routines into an optimized and extensible Python program, with both GUI and command-line implementations to facilitate its use on both local machines and remote clusters, and by beginners and advanced users alike. We demonstrate that the performance of this code is on a par with our previous MATLAB implementation but runs at a fraction of the computational cost. We show the code is capable of extracting fluorescence intensity values corresponding to single reporter dye molecules and, using these, to estimate molecular stoichiometries and single cell copy numbers of fluorescently labeled biomolecules. It can also evaluate diffusion coefficients for the relatively short single-particle tracking data that is characteristic of time-resolved image stacks. To facilitate benchmarking against other codes, we also include data simulation routines which may trivially be used to compare different analysis programs. Finally, we show that PySTACHIO works also with two-color data and can perform colocalization analysis based on overlap integrals, to infer interactions between differently labelled biomolecules. We hope that by making this freely available for use and modification we can make complex single-molecule analysis of light microscopy data more accessible.


翻译:随着高度敏感的相机像素传感器阵列的扩大和加快,以及光学显微镜技术的日益完善,在常规光显微镜检查期间获得的数据数量出现爆炸。在单分子一级,这种分析涉及多个步骤,可以迅速成为计算费用,有时在普通办公工作站中难以解决。此外,复杂隐喻软件可以给新用户带来一个很高的启动障碍。在这项工作中,我们展示了我们最近的努力,将我们定量的单分子分析常规重新发展成一个优化和可扩展的 Python 程序,同时使用图形界面和命令线执行,以便利本地机器和远程常规集以及初始和高级用户使用这些数据。我们证明,这一代码的性能与我们以前的 MATLAB 实施过程相当,但运行的计算成本的一小部分。我们显示,代码能够提取与单一报告者染色分子分子相对应的荧光强度值,并且,利用这些,我们可以对可获取的分子缩略缩缩略图和单细胞互动,同时在本地的常规程序之间,我们也可以对当前版本数据进行简单分析。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【资源】100+本免费数据科学书
专知会员服务
107+阅读 · 2020年3月17日
已删除
将门创投
3+阅读 · 2019年1月8日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
0+阅读 · 2021年5月12日
Arxiv
0+阅读 · 2021年5月4日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年1月8日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员