While running any experiment, we often have to consider the statistical power to ensure an effective study. Statistical power or power ensures that we can observe an effect with high probability if such a true effect exists. However, several studies lack the appropriate planning for determining the optimal sample size to ensure adequate power. Thus, careful planning ensures that the power remains high even under high measurement errors while keeping the type 1 error constrained. We study the impact of differential privacy on experiments and theoretically analyze the change in sample size required due to the Gaussian mechanisms. Further, we provide an empirical method to improve the accuracy of private statistics with simple bootstrapping.
翻译:在进行任何实验时,我们往往必须考虑统计力量,以确保有效研究。统计力量或力量确保我们能够在确实存在这种效果的情况下以很高的概率观测到某种效果。然而,一些研究缺乏适当的规划,无法确定最佳抽样规模,以确保有足够的电力。因此,仔细规划可以确保即使在高度测量误差下权力仍然很高,同时保持第1类误差的限制。我们研究不同隐私对实验的影响,从理论上分析高斯机制所要求的抽样规模的变化。此外,我们提供了一种经验方法,用简单的靴子提高私人统计数据的准确性。