There has been a surge of interest in spectral hypergraph sparsification, a natural generalization of spectral sparsification for graphs. In this paper, we present a simple fully dynamic algorithm for maintaining spectral hypergraph sparsifiers of \textit{directed} hypergraphs. Our algorithm achieves a near-optimal size of $O(n^2 / \varepsilon ^2 \log ^7 m)$ and amortized update time of $O(r^2 \log ^3 m)$, where $n$ is the number of vertices, and $m$ and $r$ respectively upper bound the number of hyperedges and the rank of the hypergraph at any time. We also extend our approach to the parallel batch-dynamic setting, where a batch of any $k$ hyperedge insertions or deletions can be processed with $O(kr^2 \log ^3 m)$ amortized work and $O(\log ^2 m)$ depth. This constitutes the first spectral-based sparsification algorithm in this setting.


翻译:谱超图稀疏化作为图谱稀疏化的自然推广,近年来引起了广泛关注。本文提出了一种简单的全动态算法,用于维护\textit{有向}超图的谱稀疏化子。该算法实现了近乎最优的规模$O(n^2 / \varepsilon ^2 \log ^7 m)$和均摊更新时间为$O(r^2 \log ^3 m)$,其中$n$为顶点数,$m$和$r$分别表示任意时刻超边数量的上界和超图的秩。我们还将该方法扩展到并行批量动态场景,其中任意$k$条超边的插入或删除批处理可在$O(kr^2 \log ^3 m)$的均摊工作量和$O(\log ^2 m)$的深度下完成。这构成了该场景下首个基于谱的稀疏化算法。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月26日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员