Vector addition systems with states (VASS) are widely used for the formal verification of concurrent systems. Given their tremendous computational complexity, practical approaches have relied on techniques such as reachability relaxations, e.g., allowing for negative intermediate counter values. It is natural to question their feasibility for VASS enriched with primitives that typically translate into undecidability. Spurred by this concern, we pinpoint the complexity of integer relaxations with respect to arbitrary classes of affine operations. More specifically, we provide a trichotomy on the complexity of integer reachability in VASS extended with affine operations (affine VASS). Namely, we show that it is NP-complete for VASS with resets, PSPACE-complete for VASS with (pseudo-)transfers and VASS with (pseudo-)copies, and undecidable for any other class. We further present a dichotomy for standard reachability in affine VASS: it is decidable for VASS with permutations, and undecidable for any other class. This yields a complete and unified complexity landscape of reachability in affine VASS. We also consider the reachability problem parameterized by a fixed affine VASS, rather than a class, and we show that the complexity landscape is arbitrary in this setting.


翻译:各州( VASS) 的矢量加增系统被广泛用于正式核查并行系统( VASS ) 。 由于其巨大的计算复杂性, 实用的方法依赖了可变性放松等技术, 例如允许负中间反值。 自然地会质疑这些技术对VASS的可行性, 以原始物质浓缩, 通常转化成不可变异性。 受到这一关切的刺激, 我们点出与任意类类的松动操作相关的整变放松的复杂程度。 更具体地说, 我们提供了一个关于VASS 的可完全可达性复杂性的三重体裁法, 并配有折叠式操作( ficine VASS ) 。 也就是说, 我们显示VASS 与 Reset、 PSPACE 和 VASS 完全、 PSPACE 完全和 VASS 具有( 假的) 和 不可变异性( 假的) 。 我们进一步提出在 松动型操作操作中标准可达性区分: VAS 是VASS 的完整和统一复杂度的复杂度, 我们也考虑在级中选择性地展示了一个固定的可达定式的变式变式变式的变式变式的变式的变式的变式的变形变式。

0
下载
关闭预览

相关内容

【斯坦福2021新书】决策算法,694页pdf阐述不确定性决策
专知会员服务
255+阅读 · 2021年1月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【 关关的刷题日记47】Leetcode 38. Count and Say
【LeetCode 136】 关关的刷题日记32 Single Number
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年9月16日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【 关关的刷题日记47】Leetcode 38. Count and Say
【LeetCode 136】 关关的刷题日记32 Single Number
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员