Although it has been well accepted that the asymptotic covariance matrix of maximum likelihood estimates (MLE) for complete data is given by the inverse Fisher information, this paper shows that when the MLE for incomplete data is derived using the EM algorithm, the asymptotic covariance matrix is however no longer specified by the inverse Fisher information. In general, the new information is smaller than the latter in the sense of Loewner partial ordering. A sandwich estimator of covariance matrix is developed based on the observed information of incomplete data and a consistent estimator of complete-data information matrix. The observed information simplifies calculation of conditional expectation of outer product of the complete-data score function appeared in the Louis (1982) general matrix formula. The proposed sandwich estimator takes a different form than the Huber sandwich estimator under model misspecification framework (Freedman, 2006 and Little and Rubin, 2020). Moreover, it does not involve the inverse observed Fisher information of incomplete data which therefore notably gives an appealing feature for application. Recursive algorithms for the MLE and the sandwich estimator of covariance matrix are presented. Application to parameter estimation of regime switching conditional Markov jump process is considered to verify the results. The simulation study confirms that the MLEs are accurate and consistent having asymptotic normality. The sandwich estimator produces standard errors of the MLE which are closer to their analytic values than those provided by the inverse observed Fisher information.


翻译:虽然人们公认,渔业者提供的完整数据的最大概率估计(MLE)的微量共变矩阵是由反向渔业者信息提供的,但本文表明,当使用EM算法对不完整数据生成的不完整数据 MLE 进行微量共变矩阵时,渔业者反向信息不再对无源共变矩阵作出说明;一般而言,新信息比后者小,即Loewner部分订购(Freedman,2006年和Little and Rubin,2020年)意义上的偏差。根据观察到的不完整数据资料和完整数据信息矩阵的一致估计,开发出一个共差矩阵。观察到的信息简化了计算完整数据评分函数外部产品对完整数据评分功能的有条件期望。Louis(1982年)通用矩阵公式显示的是Louis(1982年)一般矩阵公式中,拟议的三明治测差矩阵表表表采用不同于模型误差框架下的Huberer三明治三明治估计(Freedman,2006年,Lit and Little and Rubin,2020年)。此外,它所观察到的不完整数据,因此对应用具有吸引力特征。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
171+阅读 · 2020年6月4日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Top
微信扫码咨询专知VIP会员