While the computational processing of Kurdish has experienced a relative increase, the machine translation of this language seems to be lacking a considerable body of scientific work. This is in part due to the lack of resources especially curated for this task. In this paper, we present the first large scale parallel corpus of Central Kurdish-English, Awta, containing 229,222 pairs of manually aligned translations. Our corpus is collected from different text genres and domains in an attempt to build more robust and real-world applications of machine translation. We make a portion of this corpus publicly available in order to foster research in this area. Further, we build several neural machine translation models in order to benchmark the task of Kurdish machine translation. Additionally, we perform extensive experimental analysis of results in order to identify the major challenges that Central Kurdish machine translation faces. These challenges include language-dependent and-independent ones as categorized in this paper, the first group of which are aware of Central Kurdish linguistic properties on different morphological, syntactic and semantic levels. Our best performing systems achieve 22.72 and 16.81 in BLEU score for Ku$\rightarrow$EN and En$\rightarrow$Ku, respectively.
翻译:虽然库尔德语的计算处理相对增加,但这种语言的机器翻译似乎缺乏大量的科学工作,部分原因是缺乏特别为这项任务而专门设计的资源。在本文件中,我们提出了第一批大规模的库尔德-英语中央平行材料,Awta, 其中包括229 222对手动对齐译文。我们从不同的文本流和领域收集了我们的文稿,试图建立更有力和真实的机器翻译应用。我们公开提供其中一部分材料,以促进这一领域的研究。此外,我们建造了若干神经机器翻译模型,以作为库尔德语机器翻译任务的基准。此外,我们对结果进行了广泛的实验性分析,以确定库尔德语中央机器翻译所面临的重大挑战。这些挑战包括本文中分类的、依赖语言和不依赖语言的翻译,第一组是了解库尔德语中心在不同形态、合成和语义层面上的语言特性的。我们的最佳表现系统在Ku$rightrowinEN和En$\right$K分别得分22.72和16.81。