Analysts often make visual causal inferences about possible data-generating models. However, visual analytics (VA) software tends to leave these models implicit in the mind of the analyst, which casts doubt on the statistical validity of informal visual "insights". We formally evaluate the quality of causal inferences from visualizations by adopting causal support -- a Bayesian cognition model that learns the probability of alternative causal explanations given some data -- as a normative benchmark for causal inferences. We contribute two experiments assessing how well crowdworkers can detect (1) a treatment effect and (2) a confounding relationship. We find that chart users' causal inferences tend to be insensitive to sample size such that they deviate from our normative benchmark. While interactively cross-filtering data in visualizations can improve sensitivity, on average users do not perform reliably better with common visualizations than they do with textual contingency tables. These experiments demonstrate the utility of causal support as an evaluation framework for inferences in VA and point to opportunities to make analysts' mental models more explicit in VA software.
翻译:分析师往往对可能的生成数据模型作出视觉因果关系推断。然而,视觉分析软件往往将这些模型隐含在分析师的脑海中,使人怀疑非正式视觉“视觉”的统计有效性。我们正式通过采用因果支持来评价从可视化中得出的因果关系推断的质量 -- -- 一种巴耶斯的认知模型,该模型根据某些数据了解其他因果解释的概率 -- -- 作为因果推断的规范性基准。我们贡献了两项实验,评估人群工人能够检测到(1) 一种治疗效应和(2) 一种纠结的关系。我们发现,图表用户的因果推断往往对抽样大小不敏感,因此它们偏离了我们的规范基准。虽然在可视化中交互交叉过滤的数据可以提高敏感性,但平均用户在一般的视觉解释上并不比文本应急表更可靠。这些实验表明,作为在VA的推断评价框架,因果关系支持的效用,并指明使分析师的心理模型在VA软件中更加明确的机会。