Autonomous navigation of mobile robots is a well studied problem in robotics. However, the navigation task becomes challenging when multi-robot systems have to cooperatively navigate dynamic environments with deadlock-prone layouts. We present a Distributed Timed Elastic Band (DTEB) Planner that combines Prioritized Planning with the online TEB trajectory Planner, in order to extend the capabilities of the latter to multi-robot systems. The proposed planner is able to reactively avoid imminent collisions as well as predictively resolve potential deadlocks among a team of robots, while navigating in a complex environment. The results of our simulation demonstrate the reliable performance and the versatility of the planner in different environment settings. The code and tests for our approach are available online.


翻译:自主移动机器人的导航问题是机器人领域中研究深入的问题之一。然而,当多个机器人系统需要在死锁易发的动态环境中合作导航时,导航任务变得更加具有挑战性。我们提出了一种分布式定时弹性带(DTEB)规划器,结合优先规划和在线TEB轨迹规划器,以扩展后者在多机器人系统中的应用。所提出的规划器能够在复杂环境中适应性地避免即将发生的碰撞,并预测性地解决机器人团队之间的潜在死锁问题。我们的仿真结果表明了该规划器在不同环境设置下的可靠性和多功能性。我们的方法代码和测试已在网上公开。

0
下载
关闭预览

相关内容

【ETH、Stanford】基于博弈论的运动规划,Tutorial ICRA '21
专知会员服务
56+阅读 · 2022年3月7日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
40+阅读 · 2020年9月6日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
【ETH、Stanford】基于博弈论的运动规划,Tutorial ICRA '21
专知会员服务
56+阅读 · 2022年3月7日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
40+阅读 · 2020年9月6日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员