We investigate the four solar system tests of gravity - perihelion precession, light bending, Shapiro time delay, gravitational redshift - in $f(T)$ gravity. In particular, we investigate the solution derived by Ruggiero and Radicella, Phys. Rev. D 91, 104014 (2015), for a nondiagonal vierbein field for a polynomial $f(T) = T + \alpha T^n$, where $\alpha$ is a constant and $|n| \neq 1$. In this paper, we derive the solutions for each test, in which Weinberg's, Bodenner and Will's, Cattani et al. and Rindler and Ishak's methods are applied, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972); Am. J. Phys. 71 (2003); Phys. Rev. D 87, 047503 (2013); Phys. Rev. D 76, 043006 (2007). We set a constraint on alpha for $n$ = 2, 3 by using data available from literature.
翻译:我们用重力调查四个太阳系的重力测试 -- -- 近视割裂、轻弯曲、Shapiro时间延迟、重力红色轮班 -- -- 重力,特别是我们调查鲁吉罗和拉迪切拉、菲茨、D91、104014(2015年)Rev.D.91、104014(2015年)等非对角体静脉场的溶液,以多元性(f)f(T) = T+ alpha T ⁇ n$,其中美元为恒定和1美元。在本文中,我们为每一项测试找出解决办法,其中适用了温伯格、博登纳和威尔、卡特尼等人、林特勒和伊沙克方法,《引引力和宇宙学:相对性一般理论的原则和应用》(1972年,纽约,威利);Am. J. Phys. 71(2003年),Phys. Rev. D 87, 04703(2013);Phys. Rev. 76, etanialler and Ishak's, 3006(2007年),我们根据可获取的文献,设定为限制。