This paper describes and develops a fast and accurate path following algorithm that computes the field of values boundary curve for every conceivable complex or real square matrix $A$. It relies on a matrix flow decomposition method that finds a proper block-diagonal flow representation for the associated hermitean matrix flow ${\cal F}_A(t) = \cos(t) H + \sin(t) K$. Here ${\cal F}_A(t)$ is a 1-parameter-varying linear combination of the real and skew part matrices $H = (A+A^*)/2$ and $K = (A-A^*)/(2i)$ of $A$. For decomposing flows ${\cal F}_A(t)$, the algorithm decomposes a given dense general matrix $A$ unitarily into block-diagonal form $U^*AU = \text { diag} (A_j)$ with $j > 1$ diagonal blocks $A_j$ whose individual sizes add up to the size of $A$. It then computes the field of values boundaries separately for each diagonal block $A_j$ using the path following ZNN eigenvalue method. The convex hull of all sub-fields of values boundary points then determines the field of values boundary curve correctly for decomposing and non-decomposing matrices $A$. The algorithm removes standard restrictions for path following FoV methods that generally cannot deal with decomposing matrices $A$ due to possible eigencurve crossings of ${\cal F}_A(t)$. Tests and numerical comparisons are included. Our ZNN based method is coded for sequential and parallel computations and both versions run very accurately and very fast when compared with Johnson's Francis QR eigenvalue and Bendixon rectangle based method that computes complete eigenanalyses of ${\cal F}_A(t_k)$ for every chosen $t_k \in {[} 0,2\pi{]}$ more slowly.


翻译:本文描述并开发一个快速和准确的路径, 遵循算法计算每个可以想象的复杂或真实平方基质的值界曲线域 $A$。 它依赖于一个矩阵流分解法, 找到一个合适的块- 直角流代表 与相关的雌巢矩阵流 $@cal F _A( t) =\ cos( t) H+\ sin( t) K$。 这里 $_ cal F*A( t) 等于一个参数- 线性线性组合, 真实和 skew 部分路径 $H= (A+A) /2$和$K=( A- A) = (A- A) / ( 2 i) $。 对于解析矩阵流动 $ F*A( t) = (t) 直径直径直径( 美元) 直径直径( R) 直径) 和直径( 直径) 直径( 直径) 直径( A_ 美元) 直径( 美元) 直径) 直径( 直径) 直径( 直径) 直径) 直径(a) 直) 直方块( 直) 直) 直) 直) 直) 直) 直(美元) 折(美元) 直) 直) 直(美元) 直方块块块(美元) (美元) (美元) (美元) 直) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (和 直) (美元) ( 直) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
161+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月4日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员