Some major challenges associated with the automated processing of whole slide images (WSIs) includes their sheer size, different magnification levels and high resolution. Utilizing these images directly in AI frameworks is computationally expensive due to memory constraints, while downsampling WSIs incurs information loss and splitting WSIs into tiles and patches results in loss of important contextual information. We propose a novel dual attention approach, consisting of two main components, to mimic visual examination by a pathologist. The first component is a soft attention model which takes as input a high-level view of the WSI to determine various regions of interest. We employ a custom sampling method to extract diverse and spatially distinct image tiles from selected high attention areas. The second component is a hard attention classification model, which further extracts a sequence of multi-resolution glimpses from each tile for classification. Since hard attention is non-differentiable, we train this component using reinforcement learning and predict the location of glimpses without processing all patches of a given tile, thereby aligning with pathologist's way of diagnosis. We train our components both separately and in an end-to-end fashion using a joint loss function to demonstrate the efficacy of our proposed model. We employ our proposed model on two different IHC use cases: HER2 prediction on breast cancer and prediction of Intact/Loss status of two MMR biomarkers, for colorectal cancer. We show that the proposed model achieves accuracy comparable to state-of-the-art methods while only processing a small fraction of the WSI at highest magnification.
翻译:与整张幻灯片图像的自动处理相关的一些主要挑战包括其大小、不同的放大度和高分辨率。 在AI框架中直接使用这些图像,由于记忆限制,计算成本高昂,而下取样的WSI则造成信息丢失,并将WSI分成砖块和补丁,从而导致重要背景信息丢失。我们建议采用由两个主要组成部分组成的新的双重关注方法,以模拟病理学家的视觉检查。第一个组成部分是一个软关注模式,它以输入WSI的高层次视图来确定不同感兴趣的区域。我们使用定制取样方法从选定的高关注地区提取多样和空间上不同的图像砖块。第二个组成部分是一个难注意的分类模型,进一步从每种图案中提取多分辨率的一览,从而导致重要背景信息丢失。由于注意不易,我们用强化学习和预测的洞察位置而不处理给定的图案,从而与病理学家的诊断方法相一致。我们用定制的样本和空间观察方法分别和空间与空间科学研究所不同的图像。我们用两种不同的模型来测试我们的模型,同时用我们提出的双色的预测方法来展示我们提出的双色的IMR 。