Typically, the current dose prediction models are limited to small amounts of data and require re-training for a specific site, often leading to suboptimal performance. We propose a site-agnostic, 3D dose distribution prediction model using deep learning that can leverage data from any treatment site, thus increasing the total data available to train the model. Applying our proposed model to a new target treatment site requires only a brief fine-tuning of the model to the new data and involves no modifications to the model input channels or its parameters. Thus, it can be efficiently adapted to a different treatment site, even with a small training dataset.
翻译:通常情况下,目前的剂量预测模型仅限于少量数据,需要对特定地点进行再培训,往往导致不尽人意的性能。我们提出一个现场不可知性、3D剂量分布预测模型,利用深刻的学习,利用来自任何治疗地点的数据,从而增加可用于培训模型的总数据。将我们提议的模型应用到一个新的目标治疗地点只需要对模型进行简短的微调,以适应新的数据,而不涉及对模型输入渠道或其参数的修改。因此,即使有少量的培训数据集,也可以有效地适应不同的治疗地点。