We present FedScale, a federated learning (FL) benchmarking suite with realistic datasets and a scalable runtime to enable reproducible FL research. FedScale datasets encompass a wide range of critical FL tasks, ranging from image classification and object detection to language modeling and speech recognition. Each dataset comes with a unified evaluation protocol using real-world data splits and evaluation metrics. To reproduce realistic FL behavior, FedScale contains a scalable and extensible runtime. It provides high-level APIs to implement FL algorithms, deploy them at scale across diverse hardware and software backends, and evaluate them at scale, all with minimal developer efforts. We combine the two to perform systematic benchmarking experiments and highlight potential opportunities for heterogeneity-aware co-optimizations in FL. FedScale is open-source and actively maintained by contributors from different institutions at http://fedscale.ai. We welcome feedback and contributions from the community.
翻译:我们介绍了FedService(FedService),这是一套联邦学习基准套件,配有现实的数据集和可扩缩的运行时间,以便能够进行可复制的FL研究。FedService数据集包含广泛的关键FL任务,从图像分类和对象探测到语言建模和语音识别等。每个数据集都有一个使用真实世界数据拆分和评估指标的统一评价协议。为了复制现实的FL行为,FedService包含一个可扩缩和可扩展的运行时间。它提供高层次的API,以实施FL算法,在各种硬件和软件后端中进行规模的部署,并在规模上进行评估,所有工作都是最低限度的开发者。我们把这两套数据结合起来,以进行系统的基准实验,并突出在FL.FedSirmation中进行异性认知性共同操作的潜在机会。FedSilcy是开放的源,由不同机构的贡献者在http://fedscaldassa.ai上积极维护。我们欢迎来自社区的反馈和贡献。