Let $G$ be a connected graph with $N$ vertices. Let $k$ be the number of vertices in a longest path of $G$ such that every vertex on the path is a cut vertex of $G$, and every intermediate vertex of the path is a degree-two vertex of $G$. We conventionally set $k = 1$ when $G$ is $2$-edge-connected. Let $P=\{1,\ldots,n\}$ be a set of pebbles with $k < N-n$. A \textit{configuration} of $P$ on $G$ is defined as a function $f$ from $V(G)$ to $\{0, 1, \ldots, n \}$ with $|f^{-1}(i)| = 1$ for $1 \le i \le n$, where $f^{-1}(i)$ is a vertex occupied with the $i$th pebble for $1 \le i \le n$ and $f^{-1}(0)$ is a set of unoccupied vertices. A \textit{move} is defined as shifting a pebble from a vertex to some unoccupied neighbor. The {\it pebble motion problem on the pair $(G,P)$} is to decide whether a given configuration of pebbles is reachable from another by executing a sequence of moves. Let $\D(G)$ denote the diameter of the graph $G$, and let $\CL(G)$ denote the maximum length of a shortest cycle containing a vertex $v$, taken over all vertices $v$ in all $2$-connected components of $G$. For completeness, we define $\CL(G) := 1$ when $G$ is a tree. In this paper, we show that the length of the shortest solution sequences for the pebble motion problem on a pair $(G, P)$ is in $\Ord\left(n\D(G) + \min\left\{k n \D(G),\ n^{2} \log\big(1+\min\{n, k\}\big)\right\}\right)$ if $G$ is an $N$-vertex tree, and in $\Ord\left(n\D(G)+\frac{n^2\min\{n,\CL(G)\}}{N-n}+n^2\log(1+\min\{n, N-n\})\right)$ if $G$ is a connected general $N$-vertex graph. Furthermore, in the case where $G$ is a connected general $N$-vertex graph and the number of unoccupied spaces $N - n$ is bounded by some constant, this length admits an upper bound of $\Ord(n \CL(G) \D(G))$. Keywords: pebble motion, motion planning, multi-agent path finding, $15$-puzzle, tree
翻译:设 $G$ 为具有 $N$ 个顶点的连通图。令 $k$ 为 $G$ 中最长路径的顶点数,该路径满足:路径上每个顶点均为 $G$ 的割点,且所有中间顶点均为 $G$ 的二度顶点。当 $G$ 为 $2$-边连通时,我们约定 $k = 1$。令 $P=\{1,\ldots,n\}$ 为石子集合,满足 $k < N-n$。$P$ 在 $G$ 上的一个\textit{配置}定义为函数 $f: V(G) \to \{0, 1, \ldots, n \}$,其中对 $1 \le i \le n$ 有 $|f^{-1}(i)| = 1$,此处 $f^{-1}(i)$ 表示被第 $i$ 个石子占据的顶点($1 \le i \le n$),而 $f^{-1}(0)$ 表示未被占据的顶点集合。一次\textit{移动}定义为将石子从一个顶点移至某个未被占据的相邻顶点。\textit{在配对 $(G,P)$ 上的石子移动问题}即判断给定配置是否可通过执行一系列移动从另一配置到达。令 $\D(G)$ 表示图 $G$ 的直径,$\CL(G)$ 表示在所有 $G$ 的 $2$-连通分量中,包含顶点 $v$ 的最短环的最大长度(取遍所有顶点 $v$)。为完备起见,当 $G$ 为树时定义 $\CL(G) := 1$。本文证明:若 $G$ 为 $N$ 顶点树,则配对 $(G, P)$ 上石子移动问题最短解序列的长度属于 $\Ord\left(n\D(G) + \min\left\{k n \D(G),\ n^{2} \log\big(1+\min\{n, k\}\big)\right\}\right)$;若 $G$ 为连通的一般 $N$ 顶点图,则属于 $\Ord\left(n\D(G)+\frac{n^2\min\{n,\CL(G)\}}{N-n}+n^2\log(1+\min\{n, N-n\})\right)$。进一步地,当 $G$ 为连通的一般 $N$ 顶点图且未被占据空间数 $N - n$ 受常数界约束时,该长度存在上界 $\Ord(n \CL(G) \D(G))$。关键词:石子移动,运动规划,多智能体路径规划,$15$ 数码游戏,树