Question Generation (QG) is fundamentally a simple syntactic transformation; however, many aspects of semantics influence what questions are good to form. We implement this observation by developing Syn-QG, a set of transparent syntactic rules leveraging universal dependencies, shallow semantic parsing, lexical resources, and custom rules which transform declarative sentences into question-answer pairs. We utilize PropBank argument descriptions and VerbNet state predicates to incorporate shallow semantic content, which helps generate questions of a descriptive nature and produce inferential and semantically richer questions than existing systems. In order to improve syntactic fluency and eliminate grammatically incorrect questions, we employ back-translation over the output of these syntactic rules. A set of crowd-sourced evaluations shows that our system can generate a larger number of highly grammatical and relevant questions than previous QG systems and that back-translation drastically improves grammaticality at a slight cost of generating irrelevant questions.
翻译:问题产生(QG)从根本上说是一种简单的合成转变;然而,语义学的许多方面影响着哪些问题是好的。我们通过开发Syn-QG来落实这一观察,Syn-QG是一套透明的合成规则,它利用普遍依赖、浅语义解析、词汇资源和习惯规则等手段,将宣示性句变成问答配对。我们利用PropBank的参数描述和VerbNet的前提将浅语义内容纳入其中,这有助于产生描述性的问题,并产生比现有系统更荒谬、更丰富的语义问题。为了改进合成性流利并消除不正确的语法问题,我们对这些拼写性规则的输出进行反译。一组众源评估表明,我们的系统可以产生比以往的QG系统更多的高语法和相关问题,而回译会大大改善语义性,以少量成本产生不相关的问题。