While rankings are at the heart of social science research, little is known about how to analyze ranking data in experimental studies. This paper introduces a potential outcomes framework to perform causal inference when outcome data are ranking data. It clarifies the structure and multi-dimensionality of ranking data, introduces causal estimands tailored to ranked outcomes, and develops methods for estimation and inference. Furthermore, it extends the framework to partially ranked data by building on principal stratification. I show that partial rankings can be considered a selection problem and propose nonparametric sharp bounds for the treatment effects. Using the methods, I reanalyze the recent study on blame attribution in the Stephon Clark shooting, finding that people's responses to officer-involved shootings are robust to the contextual information about police brutality and reform. I also apply the methods to an experimental design for quantifying ballot order effects in ranked-choice voting.
翻译:虽然排名是社会科学研究的核心,但在如何分析实验研究中的排名数据方面却鲜为人知。本文介绍了一个潜在结果框架,以在结果数据是排名数据时进行因果关系推断。它澄清了排名数据的结构和多维性,根据排名结果提出了因果估计,并制定了估计和推断方法。此外,它通过以主要分级为基础,将框架扩大到部分排名数据。我表明部分排名可以被视为选择问题,并提出治疗效果的非对称直径。我利用这些方法,重新分析了最近在斯泰芬·克拉克枪击案中关于责怪归属的研究,发现人们对警员参与射击的反应对有关警察暴行和改革的背景信息是有力的。我还运用了方法来实验性设计,以量化排名投票中的选票顺序效果。