This paper introduces the Nystr\"om PCG algorithm for solving a symmetric positive-definite linear system. The algorithm applies the randomized Nystr\"om method to form a low-rank approximation of the matrix, which leads to an efficient preconditioner that can be deployed with the conjugate gradient algorithm. Theoretical analysis shows that preconditioned system has constant condition number as soon as the rank of the approximation is comparable with the number of effective degrees of freedom in the matrix. The paper also develops adaptive methods that provably achieve similar performance without knowledge of the effective dimension. Numerical tests show that Nystr\"om PCG can rapidly solve large linear systems that arise in data analysis problems, and it surpasses several competing methods from the literature.
翻译:本文介绍了用于解决对称正确定线性系统的 Nystr\"om PCG 算法。 算法应用随机的 Nystr\\"om 方法来形成一个低级矩阵近似值, 从而导致一个高效的先决条件, 可以与同级梯度算法一起部署。 理论分析显示, 一旦近位的等级与矩阵中有效自由度的数量相仿, 前提系统就具有恒定条件数 。 文件还开发了适应性方法, 这些方法可以在不了解有效维度的情况下实现类似的性能。 数字测试显示 Nystr\"om PCG 可以快速解决数据分析问题中出现的大型线性系统, 并且它超过了文献中的若干相互竞争的方法 。