Many materials processes and properties depend on the anisotropy of the energy of grain boundaries, i.e. on the fact that this energy is a function of the five geometric degrees of freedom (DOF) of the grain boundaries. To access this parameter space in an efficient way and discover energy cusps in unexplored regions, a method was recently established, which combines atomistic simulations with statistical methods 10.1002/adts.202100615. This sequential sampling technique is now extended in the spirit of an active learning algorithm by adding a criterion to decide when the sampling is advanced enough to stop. To this instance, two parameters to analyse the sampling results on the fly are introduced: the number of cusps, which correspond to the most interesting and important regions of the energy landscape, and the maximum change of energy between two sequential iterations. Monitoring these two quantities provides valuable insight into how the subspaces are energetically structured. The combination of both parameters provides the necessary information to evaluate the sampling of the 2D subspaces of grain boundary plane inclinations of even non-periodic, low angle grain boundaries. With a reasonable number of datapoints in the initial design, only a few sequential iterations already influence the accuracy of the sampling substantially and the new algorithm outperforms regular high-throughput sampling.


翻译:许多材料过程和特性取决于谷物边界能量的动脉,即这种能量是谷物边界五几何自由度(DOF)的函数。为了以有效的方式进入该参数空间并发现未勘探区域的能量螺旋,最近制定了一种方法,将原子模拟与统计方法10.1002/adts.202100615相结合。这种连续抽样技术现在本着积极学习算法的精神扩大,增加了一个标准,以决定取样在何时达到可以停止的程度。在这方面,引入了两个参数来分析飞行取样结果:与能源景观中最有趣和最重要的区域相对应的螺旋体数目,以及两次相继迭之间的最大能量变化。监测这两个数量对亚空间的动态结构提供了宝贵的洞察力。这两个参数的结合提供了必要的信息,用以评价谷物边界即使非定期、低角度边界的2D子空间的取样工作。为此,引入了两个参数来分析飞蝇取样结果:与能源景观中最有趣和最重要的区域对应的螺旋体数目。在初步设计中,其测算的测算中,其测序的精确度已经相当高。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月22日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员