Consider a panel data setting with observations of $N$ units over $T$ time periods. Each unit undergoes one of $D$ interventions at time period $T_0$, with $1 \le T_0 < T$, prior to which all units are under control. We present synthetic interventions (SI), a framework to estimate counterfactual outcomes of each unit under each of the $D$ interventions, averaged over the post-intervention time periods. We prove identification of this causal parameter under a latent factor model across time, units, and interventions. We furnish an estimator for this causal parameter and establish its consistency and asymptotic normality. In doing so, we establish novel identification and inference results for the synthetic controls (SC) literature. Further, we introduce a hypothesis test to validate when to use SI (and thereby SC). Through simulations and an empirical case-study, we demonstrate efficacy of the SI framework. Lastly, we discuss connections between SI and tensor estimation.
翻译:考虑小组数据设置,在时间段内观察单位为美元单位为美元单位,每个单位在时间段为0美元,在时间段为1美元/美元/T_0美元/T美元/T美元/美元/T美元/美元/T美元/之前,所有单位均在控制之下;我们提出合成干预(SI),这是在每次以美元为单位的干预下估计每个单位的反实际结果的框架,平均在干预后的时间段内;我们证明在时间段、单位和干预中,在潜在系数模型下确定了这一因果参数;我们为这一因果参数提供了一名估测员,并确定了其一致性和无症状的正常性;为此,我们为合成控制(SC)文献制定了新的识别和推断结果;此外,我们引入了假设测试,以验证何时使用SI(并由此确定SC),通过模拟和实验案例研究,我们展示了SI框架的有效性。最后,我们讨论了SI与S和Songor估算之间的联系。