We introduce a novel and highly tractable supervised learning approach based on neural networks that can be applied for the computation of model-free price bounds of, potentially high-dimensional, financial derivatives and for the determination of optimal hedging strategies attaining these bounds. In particular, our methodology allows to train a single neural network offline and then to use it online for the fast determination of model-free price bounds of a whole class of financial derivatives with current market data. We show the applicability of this approach and highlight its accuracy in several examples involving real market data. Further, we show how a neural network can be trained to solve martingale optimal transport problems involving fixed marginal distributions instead of financial market data.


翻译:我们采用了基于神经网络的新颖的、高度可移植的、监督监督的学习方法,该方法可用于计算潜在的高维金融衍生物的无模式价格界限和确定达到这些界限的最佳套期保值战略。 特别是,我们的方法允许对单一神经网络进行离线培训,然后在网上使用,以快速确定具有当前市场数据的一整类金融衍生物的无模式价格界限。 我们展示了这一方法的适用性,并在涉及实际市场数据的几个例子中强调了其准确性。 此外,我们展示了如何对神经网络进行培训,以解决涉及固定边际分配而非金融市场数据的最佳运输问题。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员