The IARAI Traffic4cast competitions at NeurIPS 2019 and 2020 showed that neural networks can successfully predict future traffic conditions 1 hour into the future on simply aggregated GPS probe data in time and space bins. We thus reinterpreted the challenge of forecasting traffic conditions as a movie completion task. U-Nets proved to be the winning architecture, demonstrating an ability to extract relevant features in this complex real-world geo-spatial process. Building on the previous competitions, Traffic4cast 2021 now focuses on the question of model robustness and generalizability across time and space. Moving from one city to an entirely different city, or moving from pre-COVID times to times after COVID hit the world thus introduces a clear domain shift. We thus, for the first time, release data featuring such domain shifts. The competition now covers ten cities over 2 years, providing data compiled from over 10^12 GPS probe data. Winning solutions captured traffic dynamics sufficiently well to even cope with these complex domain shifts. Surprisingly, this seemed to require only the previous 1h traffic dynamic history and static road graph as input.
翻译:2019年和2020年NeurIPS 2019年和2020年的IARAI Flace4cast竞赛表明,神经网络能够成功地预测未来1小时以时间和空间中简单的综合全球定位系统探测器数据为方式预测未来交通状况,因此我们重新解释了作为电影完成任务预测交通状况的挑战。U-Nets证明是成功的架构,表明有能力在这个复杂的真实地球空间进程中提取相关特征。在以前的竞赛基础上,2021年的流量4cast 2021号网络现在侧重于不同时间和空间的模型稳健性和通用性问题。从一个城市向一个完全不同的城市移动,或者从COVID之前的频率向世界移动,从而引入了明确的域变化。因此,我们第一次发布了关于这种域变化的数据。现在,竞争覆盖了10个城市,提供了2年以上的GPS探测数据汇编的数据。赢得的解决方案足以捕捉到交通动态,甚至能够应对这些复杂的域变。令人惊讶的是,这似乎只需要以前的1小时的交通动态历史和静态的路径图作为投入。