Automated shape repair approaches currently lack access to datasets that describe real-world damage geometry. We present Fantastic Breaks (and Where to Find Them: https://terascale-all-sensing-research-studio.github.io/FantasticBreaks), a dataset containing scanned, waterproofed, and cleaned 3D meshes for 78 broken objects, paired and geometrically aligned with complete counterparts. Fantastic Breaks contains class and material labels, synthetic proxies of repair parts that join to broken meshes to generate complete meshes, and manually annotated fracture boundaries. Through a detailed analysis of fracture geometry, we reveal differences between Fantastic Breaks and datasets of synthetically fractured objects generated using geometric and physics-based methods. We show experimental results of shape repair with Fantastic Breaks using multiple learning-based approaches pre-trained using a synthetic dataset and re-trained using a subset of Fantastic Breaks.
翻译:Translated abstract:
自动化的形状修复方法目前缺乏描述现实世界损伤几何形状的数据集。我们提出了神奇的断裂(在此查看:https://terascale-all-sensing-research-studio.github.io/FantasticBreaks),这是一个包含78个破碎物品的扫描、防水和清理后的3D网格数据集,并与完整对应体进行几何对齐。神奇断裂包含类别和材料标签、合成代理修复零件,它们可以连接到破碎网格上以生成完整网格,以及手动注释的断口边界。通过对断口几何形状的详细分析,我们揭示了神奇的断裂与使用几何和基于物理的方法生成的破碎物品数据集之间的差异。我们展示了使用多种基于学习的方法预先培训并使用神奇的断裂的子集进行重新培训进行形状修复的实验结果。