Let $\mathcal R$ denote the generalized Radon transform (GRT), which integrates over a family of $N$-dimensional smooth submanifolds $\mathcal S_{\tilde y}\subset\mathcal U$, $1\le N\le n-1$, where an open set $\mathcal U\subset\mathbb R^n$ is the image domain. The submanifolds are parametrized by points $\tilde y\subset\tilde{\mathcal V}$, where an open set $\tilde{\mathcal V}\subset\mathbb R^n$ is the data domain. The continuous data are $g={\mathcal R} f$, and the reconstruction is $\check f=\mathcal R^*\mathcal B g$. Here $\mathcal R^*$ is a weighted adjoint of $\mathcal R$, and $\mathcal B$ is a pseudo-differential operator. We assume that $f$ is a conormal distribution, $\text{supp}(f)\subset\mathcal U$, and its singular support is a smooth hypersurface $\mathcal S\subset\mathcal U$. Discrete data consists of the values of $g$ on a lattice $\tilde y^j$ with the step size $O(\epsilon)$. Let $\check f_\epsilon=\mathcal R^*\mathcal B g_\epsilon$ denote the reconstruction obtained by applying the inversion formula to an interpolated discrete data $g_\epsilon(\tilde y)$. Pick a generic pair $(x_0,\tilde y_0)$, where $x_0\in\mathcal S$, and $\mathcal S_{\tilde y_0}$ is tangent to $\mathcal S$ at $x_0$. The main result of the paper is the computation of the limit $$ f_0(\check x):=\lim_{\epsilon\to0}\epsilon^\kappa \check f_\epsilon(x_0+\epsilon\check x). $$ Here $\kappa\ge 0$ is selected based on the strength of the reconstructed singularity, and $\check x$ is confined to a bounded set. The limiting function $f_0(\check x)$, which we call the discrete transition behavior, allows computing the resolution of reconstruction.


翻译:以 $0 平坦的拉松变换( GRT) 。 平坦的折叠值由 $0 平坦的调值( $0 平坦的调值) 组合成 $0 美元平坦的调值 $mathal Stilde, 1\le Nle n$, 其中开放的设置为$mathcal U\ subset\ mathbr美元为图像域 。 $motherform 的折叠值由 $@tildeal $ $@til$ 美元平平平平平平平平的调值 美元 。 美元平坦的平平坦的平坦值由 美元平坦的 美元 美元平坦的平坦值 。 美元平坦的平坦值由 美元平坦的平坦的 。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年12月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2019年10月29日
Nature子刊:电催化合成氨领域获得突破!
材料科学与工程
10+阅读 · 2019年3月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年10月29日
Nature子刊:电催化合成氨领域获得突破!
材料科学与工程
10+阅读 · 2019年3月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员