Randomized algorithms based on sketching have become a workhorse tool in low-rank matrix approximation. To use these algorithms safely in applications, they should be coupled with diagnostics to assess the quality of approximation. To meet this need, this paper proposes a jackknife resampling method to estimate the variability of the output of a randomized matrix computation. The variability estimate can recognize that a computation requires additional data or that the computation is intrinsically unstable. As examples, the paper studies jackknife estimates for two randomized low-rank matrix approximation algorithms. In each case, the operation count for the jackknife estimate is independent of the dimensions of the target matrix. In numerical experiments, the estimator accurately assesses variability and also provides an order-of-magnitude estimate of the mean-square error.
翻译:基于草图的随机算法已成为低级矩阵近似中的工作马工具。 为了在应用中安全地使用这些算法, 应用这些算法时应该配有诊断性来评估近似的质量。 为了满足这一需要, 本文建议了一种切片抽取方法来估计随机矩阵计算输出的变异性。 变异性估计可以确认计算需要额外数据, 或者计算本身是不稳定的。 例如, 纸片研究 jacknife 估计了两种随机的低级矩阵近似算法。 在每种情况下, jacknife 估计的操作计算与目标矩阵的尺寸无关。 在数字实验中, 估计器准确评估了一个随机矩阵计算结果的变异性, 并且提供了平均差的测重度估计。