This paper introduces a general method for the exploration of equivalence classes in the input space of Transformer models. The proposed approach is based on sound mathematical theory which describes the internal layers of a Transformer architecture as sequential deformations of the input manifold. Using eigendecomposition of the pullback of the distance metric defined on the output space through the Jacobian of the model, we are able to reconstruct equivalence classes in the input space and navigate across them. Our method enables two complementary exploration procedures: the first retrieves input instances that produce the same class probability distribution as the original instance-thus identifying elements within the same equivalence class-while the second discovers instances that yield a different class probability distribution, effectively navigating toward distinct equivalence classes. Finally, we demonstrate how the retrieved instances can be meaningfully interpreted by projecting their embeddings back into a human-readable format.
翻译:暂无翻译