We prove a generalization of Krieger's embedding theorem, in the spirit of zero-error information theory. Specifically, given a mixing shift of finite type $X$, a mixing sofic shift $Y$, and a surjective sliding block code $\pi: X \to Y$, we give necessary and sufficient conditions for a subshift $Z$ of topological entropy strictly lower than that of $Y$ to admit an embedding $\psi: Z \to X$ such that $\pi \circ \psi$ is injective.
翻译:我们证明了克里格嵌入理论的概括性,这符合零风险信息理论的精神。具体地说,考虑到有限型号为X美元、混合型号为Y美元、以及一个推测性滑动区块代码$pi: X\ to Y$,我们为严格低于Y$的子轮用Z美元表层昆虫提供了必要和充分的条件,以接受一个嵌入 $\psi: Z\to X$的混合式变换,因此$\pi\crc\psi$是暗示性的。