The NP-hard graphical traveling salesman problem (GTSP) is to find a closed walk of total minimum weight that visits (at least once) each vertex in an undirected edge-weighted and not necessarily complete graph. Recently, Bla\v{z}ej et al. [ESA 2022] showed a problem kernel with $O(\tau^3)$ vertices for GTSP, where $\tau$ is the vertex cover number of the input graph. We present a problem kernel with only $O(\tau^2)$ vertices.
翻译:NP-hard 图形化旅行推销员问题(GTSP)是,在未定向边缘加权和不一定完整的图表中找到一个总最小重量的封闭行走(至少一次)每个顶部访问。最近,Bla\v{z}{z}ej 等人[ESA 2022] 显示GTSP有1个问题内核,其中GTSP有$O(\tau%3)$($tau3) 的顶端,其中$\tau$是输入图的顶端覆盖数。我们提出了一个只有O(\tau%2)$($O)的问题内核。