项目名称: 太阳燃料金属/C3N4表面等离子体复合光催化材料的制备和性能
项目编号: No.51472191
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 一般工业技术
项目作者: 曹少文
作者单位: 武汉理工大学
项目金额: 83万元
中文摘要: 新型可见光半导体g-C3N4和表面等离子体光催化材料近年来受到广泛的关注,但将这两者结合用于制备太阳燃料的研究却很少见。本项目提出设计和制备基于超薄g-C3N4和具有强表面等离子体共振效应的金属(Au和Ag)的复合光催化材料,并将其应用于光催化分解水产氢和二氧化碳加氢还原制备碳氢化合物的反应当中。通过调控金属和g-C3N4的形貌、尺寸和组分等方法探索金属/g-C3N4表面等离子体光催化材料的可控制备,研究所制备材料的可见光光催化分解水产氢性能,并进一步研究其用于温室气体二氧化碳可见光光催化加氢生产甲烷甲醇等碳氢燃料的性能,探讨表面等离子体共振效应和g-C3N4可见光吸收耦合作用下的光催化机理,揭示金属/g-C3N4复合材料的组分、结构和金属负载量与光催化产氢以及二氧化碳加氢还原性能之间的内在联系,为发展高可见光利用率、高活性和高稳定性的太阳燃料光催化材料提供实验依据和理论指导。
中文关键词: 光催化材料;表面等离子体效应;石墨相碳氮化合物;光解水制氢;二氧化碳加氢还原
英文摘要: Graphitic carbon nitride (g-C3N4)and plasmonic photocatalysts have been attracting great interest in recent years. However, the research on solar-to-fuels conversion using photocatalysts constructed by the new developed visible-light semiconductor g-C3N4 and plasmonic metals with strong surface plasmon resonance (SPR) effect is just at the initial stage. This project is an innovative study on the design and fabrication of hybrid photocatalysts based on the combination of g-C3N4 and plasmonic metals (Au and Ag), and their application for efficient visible-light photocatalytic hydrogen production from water reduction, as well as the CO2 reduction to produce hydrocarbon fuels. In this project, the controlled preparation of plasmonic metal/g-C3N4 hybrid photocatalysts will be achieved by tuning the morphology, size, and composition of the metals and g-C3N4. The photocatalytic mechanisms will be explored in terms of the coupling action of strong SPR effect from the metals and the visible-light response from the semiconductor g-C3N4. The inherent relationship between the composition, structure, metal loading amount of the metal/g-C3N4 hybrid photocatalysts, and the photocatalytic properties for hydrogen production and CO2 reduction will be clarified. Carrying out this project will provide both practical and theoretical guidance for the development of highly stable and efficient visible-light photocatalysts for solar-to-fuels conversion.
英文关键词: Photocatalysts;plasmonic effect;g-C3N4;photocatalytic hydrogen production;CO2 reduction