Big progress has been achieved in domain adaptation in decades. Existing works are always based on an ideal assumption that testing target domain are i.i.d. with training target domains. However, due to unpredictable corruptions (e.g., noise and blur) in real data like web images, domain adaptation methods are increasingly required to be corruption robust on target domains. In this paper, we investigate a new task, Corruption-agnostic Robust Domain Adaptation (CRDA): to be accurate on original data and robust against unavailable-for-training corruptions on target domains. This task is non-trivial due to large domain discrepancy and unsupervised target domains. We observe that simple combinations of popular methods of domain adaptation and corruption robustness have sub-optimal CRDA results. We propose a new approach based on two technical insights into CRDA: 1) an easy-to-plug module called Domain Discrepancy Generator (DDG) that generates samples that enlarge domain discrepancy to mimic unpredictable corruptions; 2) a simple but effective teacher-student scheme with contrastive loss to enhance the constraints on target domains. Experiments verify that DDG keeps or even improves performance on original data and achieves better corruption robustness that baselines.
翻译:数十年来,在领域适应方面取得了巨大进展。现有的工程总是基于一个理想的假设,即测试目标领域与培训目标领域是一模一样的。然而,由于网络图像等真实数据中无法预测的腐败(例如噪音和模糊),在目标领域日益要求领域适应方法具有强大的腐败能力。在本文件中,我们调查了一个新的任务,即“腐败-诊断性软体适应(CRDA):根据原始数据准确,并有力地防止目标领域无法培训的腐败。由于大域差异和未监督的目标领域,这一任务不是三进制的。我们发现,广受欢迎的领域适应和腐败强势方法的简单组合具有亚最佳的CRDA结果。我们基于CRDA的两个技术见解提出了一种新的方法:(1) 一个简单到插接的模块,即“DDG”(DG)(DG):生成样本,将域差异扩大到模拟不可预测的腐败;(2)一个简单而有效的师资研究计划,其对比性损失,以加强目标领域的制约。我们观察了DDG(DG)保持或改进了原始数据基线,甚至改进了数据。