This is the third part in a series on a mass conserving, high order, mixed finite element method for Stokes flow. In this part, we study a block-diagonal preconditioner for the indefinite Schur complement system arising from the discretization of the Stokes equations using these elements. The underlying finite element method is uniformly stable in both the mesh size h and polynomial order p, and we prove bounds on the eigenvalues of the preconditioned system which are independent of h and grow modestly in p. The analysis relates the Schur complement system to an appropriate variational setting with subspaces for which exact sequence properties and inf-sup stability hold. Several numerical examples demonstrate agreement with the theoretical results.
翻译:这是关于Stokes流动质量保存、高顺序、混合限量元素方法系列系列的第三部分。 在这一部分中,我们研究的是使用这些元素使Stokes方程式分解产生的无限期Schur补充系统的块对角先决条件。 基础有限元素方法在网格尺寸 h 和多面顺序 p 上都一致稳定, 我们证明其与先决条件系统(独立于h)和在 p 中适度增长的树脂值有关。 分析将Schur 补充系统与适当的变异设置相联系, 其子空间具有精确序列属性和内流稳定性。 几个数字例子显示了对理论结果的一致。