In this chapter we take a closer look at the distribution of symbolic regression models generated by genetic programming in the search space. The motivation for this work is to improve the search for well-fitting symbolic regression models by using information about the similarity of models that can be precomputed independently from the target function. For our analysis, we use a restricted grammar for uni-variate symbolic regression models and generate all possible models up to a fixed length limit. We identify unique models and cluster them based on phenotypic as well as genotypic similarity. We find that phenotypic similarity leads to well-defined clusters while genotypic similarity does not produce a clear clustering. By mapping solution candidates visited by GP to the enumerated search space we find that GP initially explores the whole search space and later converges to the subspace of highest quality expressions in a run for a simple benchmark problem.
翻译:在本章中,我们更仔细地审视由搜索空间的基因编程生成的象征性回归模型的分布情况。 这项工作的动机是通过使用可以与目标函数分开预先计算模型的相似性信息,改进对适合的象征性回归模型的搜索。 我们的分析是,我们使用一个有限的单变量符号回归模型语法,并生成所有可能达到固定长度限制的模型。 我们根据基因和基因相似性,确定独特的模型并将其组合在一起。 我们发现,近似性会导致定义明确的集群,而基因相似性则不会产生清晰的集群。 通过绘制GP访问的解决方案候选人到所列举的搜索空间,我们发现,GP最初探索整个搜索空间,随后在运行一个简单的基准问题时,将它集中到质量最高表达的子空间。