In the 1960s, statistical physicists discovered a fascinating algorithm for counting perfect matchings in planar graphs. Valiant later showed that the same problem is #P-hard for general graphs. Since then, the algorithm for planar graphs was extended to bounded-genus graphs, to graphs excluding $K_{3,3}$ or $K_{5}$, and more generally, to any graph class excluding a fixed minor $H$ that can be drawn in the plane with a single crossing. This stirred up hopes that counting perfect matchings might be polynomial-time solvable for graph classes excluding any fixed minor $H$. Alas, in this paper, we show #P-hardness for $K_{8}$-minor-free graphs by a simple and self-contained argument.
翻译:1960年代,统计物理学家发现了一个在平面图中计算完美匹配的令人着迷的算法。 Valiant后来显示同样的问题在一般图形中是 #P-hard。 从那时起,平面图的算法扩大到了捆绑的genus图,不包括$K3,3}$或$K5}的图形,更一般地说,扩大到了任何不包括固定的次要美元(H美元)的图表类别,而该数额可以用一个单一的交叉点在平面上绘制。这激起了人们的希望,即精确匹配的算法对于图形类别来说可能是多式的,不包括任何固定的次要美元。 阿拉斯,在本文中,我们用简单和自成一体的参数来显示$K8}$的无硬度。