Deep learning is a powerful weapon to boost application performance in many fields, including face recognition, object detection, image classification, natural language understanding, and recommendation system. With the rapid increase in the computing power of mobile devices, developers can embed deep learning models into their apps for building more competitive products with more accurate and faster responses. Although there are several works about adversarial attacks against deep learning models in mobile apps, they all need information about the models' internals (i.e., structures, weights) or need to modify the models. In this paper, we propose an effective black-box approach by training a substitute model to spoof the deep learning system inside the apps. To evaluate our approach, we select 10 real-world deep-learning apps with high popularity from Google Play to perform black-box adversarial attacks. Through the study, we find three factors that can influence the performance of attacks. Our approach can reach a relatively high attack success rate of 66.60% on average. Compared with other adversarial attacks on mobile deep learning models, in terms of the average attack success rates, our approach outperforms counterparts by 27.63%.


翻译:深层次学习是一种强大的武器,可以提高许多领域的应用性能,包括面部识别、物体检测、图像分类、自然语言理解和建议系统。随着移动设备计算能力的快速增长,开发商可以将深层次学习模式嵌入其应用程序,用于建设更具有竞争力且反应更准确和更快的产品。虽然在移动应用程序中对深层学习模式进行对抗性攻击方面有好几项工作,但他们都需要关于模型内部(即结构、重量)的信息,或者需要修改模型。在本文中,我们提出一种有效的黑箱方法,通过培训替代模型,在应用程序中挖掘深层学习系统。为了评估我们的方法,我们选择了10个从谷歌游戏中非常受欢迎的真实世界深层次学习的应用程序来进行黑盒子对抗性攻击。通过这项研究,我们发现三个可以影响攻击性能的因素。我们的方法平均可以达到66.60%的相对较高的攻击成功率。在平均攻击成功率方面,与移动深层学习模式的其他对立式攻击性攻击相比,我们的方法优于27.63%的对等。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员