This paper proposes a methodology to obtain estimates in small domains when the target is a composite indicator. These indicators are of utmost importance for studying multidimensional phenomena, but little research has been done on how to obtain estimates of these indicators under the small area context. Composite indicators are particularly complex for this purpose since their construction requires different data sources, aggregation procedures, and weighting which makes challenging not only the estimation for small domains but also obtaining uncertainty measures. As case study of our proposal, we estimate the incidence of multidimensional poverty at the municipality level in Colombia. Furthermore, we provide uncertainty measures based on a parametric bootstrap algorithm.


翻译:本文提出了一种在小区域范围内获得组合指标的估计方法。这些指标对研究多维现象非常重要,但在小区域情境下获取这些指标的估计和不确定性测量具有挑战性。组合指标尤其复杂,因为它们的构建需要不同的数据来源、聚合程序和加权,这使得估计小区域的难度变得更高。作为我们提议的案例研究,我们估计了哥伦比亚市镇层面上的多维贫困发生率。此外,我们提供了基于参数启发式算法的不确定性测量。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月29日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员