The core obstacle towards a large-scale deployment of autonomous vehicles currently lies in the long tail of rare events. These are extremely challenging since they do not occur often in the utilized training data for deep neural networks. To tackle this problem, we propose the generation of additional synthetic training data, covering a wide variety of corner case scenarios. As ontologies can represent human expert knowledge while enabling computational processing, we use them to describe scenarios. Our proposed master ontology is capable to model scenarios from all common corner case categories found in the literature. From this one master ontology, arbitrary scenario-describing ontologies can be derived. In an automated fashion, these can be converted into the OpenSCENARIO format and subsequently executed in simulation. This way, also challenging test and evaluation scenarios can be generated.
翻译:目前,大规模部署自主车辆的核心障碍在于稀有事件的长期尾巴,这极具挑战性,因为深神经网络的利用培训数据并不经常发生。为了解决这一问题,我们提议生成更多的合成培训数据,涵盖各种各样的转角情况。由于本体学可以代表人类专家知识,同时能够进行计算处理,我们用它们来描述各种假设情况。我们提议的本体学硕士能够从文献中发现的所有共同的转角情况类别中模拟各种设想情况。从这个主本体学中,可以推断出任意的假设情况,说明本体学的本体学,可以推断出任意的假设情况。用自动化的方式,可以将这些数据转换为OpenSCENARIO格式,随后在模拟中执行。这样,也可以产生具有挑战性的测试和评价设想。