Modeling molecular potential energy surface is of pivotal importance in science. Graph Neural Networks have shown great success in this field. However, their message passing schemes need special designs to capture geometric information and fulfill symmetry requirement like rotation equivariance, leading to complicated architectures. To avoid these designs, we introduce a novel local frame method to molecule representation learning and analyze its expressivity. Projected onto a frame, equivariant features like 3D coordinates are converted to invariant features, so that we can capture geometric information with these projections and decouple the symmetry requirement from GNN design. Theoretically, we prove that given non-degenerate frames, even ordinary GNNs can encode molecules injectively and reach maximum expressivity with coordinate projection and frame-frame projection. In experiments, our model uses a simple ordinary GNN architecture yet achieves state-of-the-art accuracy. The simpler architecture also leads to higher scalability. Our model only takes about 30% inference time and 10% GPU memory compared to the most efficient baselines.
翻译:模拟分子势能面在科学研究中具有至关重要的意义。图神经网络在此领域已经取得了巨大的成功。然而,它们的信息传递方案需要特殊设计,以捕获几何信息并满足旋转等价性等对称要求,从而导致了复杂的结构。为了避免这些设计,我们引入了一种新颖的局部坐标系方法进行分子表示学习,并分析了其表达能力。当投影到坐标系中时,等变特征如3D坐标被转换为不变特征,从而可以通过这些投影来捕获几何信息,并将对称要求从GNN设计中解耦。从理论上讲,我们证明了在给定非退化坐标系的情况下,即使是普通的GNN也可以注入编码分子,并通过坐标投影和框架-框架投影实现最大表达能力。在实验中,我们的模型使用简单的常规GNN架构,却实现了最先进的准确性。更简单的架构还导致了更高的可伸缩性。与最高效的基线相比,我们的模型仅需要约30%的推理时间和10%的GPU内存。