Previous work has shown that 3D point cloud classifiers can be vulnerable to adversarial examples. However, most of the existing methods are aimed at white-box attacks, where the parameters and other information of the classifiers are known in the attack, which is unrealistic for real-world applications. In order to improve the attack performance of the black-box classifiers, the research community generally uses the transfer-based black-box attack. However, the transferability of current 3D attacks is still relatively low. To this end, this paper proposes Scale and Shear (SS) Attack to generate 3D adversarial examples with strong transferability. Specifically, we randomly scale or shear the input point cloud, so that the attack will not overfit the white-box model, thereby improving the transferability of the attack. Extensive experiments show that the SS attack proposed in this paper can be seamlessly combined with the existing state-of-the-art (SOTA) 3D point cloud attack methods to form more powerful attack methods, and the SS attack improves the transferability over 3.6 times compare to the baseline. Moreover, while substantially outperforming the baseline methods, the SS attack achieves SOTA transferability under various defenses. Our code will be available online at https://github.com/cuge1995/SS-attack
翻译:先前的工作表明, 3D点云分分类器可能易受对抗性例子的影响。 然而, 大部分现有方法都针对白箱攻击, 白箱攻击中知道分类器的参数和其他信息, 这对于现实世界应用来说是不现实的。 为了提高黑箱分类器的攻击性能, 研究界一般使用基于传输的黑箱攻击性能。 但是, 目前3D点攻击的可转移性仍然相对较低。 为此, 本文提议规模和切耳( SS) 攻击来生成具有很强可转移性的3D对抗性例子。 具体地说, 我们随机规模或切换输入点云, 以便攻击不会过分适应白箱模式, 从而改进攻击的可转移性。 广泛的实验表明, 本文中提议的SS 攻击可以与现有的“ 以传输为主的” 3D点云攻击性方法无缝结合, 并且 SS 攻击可以形成更强大的攻击方法, 和 SS 攻击可以使36. 的可转移性比基线高出3.6倍。 此外,, SS SS 攻击将大大超过基线 基线方法,,, SASA/ SOGI/SADAR 可 提供的可调制 。