The linear regression model cannot be fitted to high-dimensional data, as the high-dimensionality brings about empirical non-identifiability. Penalized regression overcomes this non-identifiability by augmentation of the loss function by a penalty (i.e. a function of regression coefficients). The ridge penalty is the sum of squared regression coefficients, giving rise to ridge regression. Here many aspect of ridge regression are reviewed e.g. moments, mean squared error, its equivalence to constrained estimation, and its relation to Bayesian regression. Finally, its behaviour and use are illustrated in simulation and on omics data. Subsequently, ridge regression is generalized to allow for a more general penalty. The ridge penalization framework is then translated to logistic regression and its properties are shown to carry over. To contrast ridge penalized estimation, the final chapter introduces its lasso counterpart.


翻译:线性回归模型无法与高维数据相适应,因为高维值带来了经验性的非可识别性。 刑事回归通过增加损失函数的处罚( 回归系数的函数) 克服了这种不可识别性。 脊峰惩罚是平方回归系数的总和, 导致脊峰回归。 这里对脊回归的许多方面进行了审查, 例如: 时点、 平均正方差、 其与受限估算的等值, 以及它与巴耶斯回归的关系。 最后, 其行为和使用在模拟和 ommics 数据中加以说明。 随后, 脊峰回归将普遍化, 以允许更普遍的处罚。 然后, 脊脊回归框架将转化为物流回归, 其特性将显示为持续。 为了对比受限的估算, 最后一章将介绍其弧素对应值。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【收藏】机器学习的Pytorch实现资源集合【附下载链接】
机器学习算法与Python学习
10+阅读 · 2018年9月8日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
TensorFlow实现深度学习算法的教程汇集:代码+笔记
数据挖掘入门与实战
8+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Distance covariance for random fields
Arxiv
0+阅读 · 2021年7月22日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【收藏】机器学习的Pytorch实现资源集合【附下载链接】
机器学习算法与Python学习
10+阅读 · 2018年9月8日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
TensorFlow实现深度学习算法的教程汇集:代码+笔记
数据挖掘入门与实战
8+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员